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I. I NTRODUCTlO?\

In this paper we examine the relationship between the Hausdorff distance
between convex sets in a normed linear space and the distance between their
Cebysev centres. We show that a spectrum of different behaviours is possible
depending upon the orientation of the sets and the nature of the norm on
the space. Recently a very special case of this problem has been discussed
in the problem section of the American Mathematical Afonthly [I].

2. PREWvlINARIES

Let A, B be convex, bounded nonempty sets in a normed linear space X.
We define the Hausdorff distance between A and B [3], by

D(A, B) = max;sup;d(x, A): x E B}, sup{d(y, B): Y E Aj},

where as usual for 5 ex, eI(x, 5) = inf:,' x - S:.I' E 5}. We define a Cebysev
centre of a bounded set 5 C X with respect to T C X, written c(5, T), as the
centre of a closed ball of minimum radius that contains 5 with centre in T.
This ball is called the Cebysev ball. If T = 5 we sometimes call the Cebysev
centre of 5 in T simply the centre of 5, written cs. The corresponding radii
will be denoted by 1(5, T) and 1(5, 5) = I., . Define R(A, B) by

R(A B) _= i C, - CB i
, D(A, B) .

for A = B. \low define p.(;F) = sup{R(A, B): (A, B) E ;F}, where .F is an
as yet unspecified family of pairs of bounded, convex, nonempty subsets of X.
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We assume that all the subsets appearing in ,y; have unique centres. This will
always be the case in a strictly convex finite dimensional space. See also [5]
for infinite dimensional criteria. The value

A(§) = inf{R(A, B): (A, B) E,y;}

is in general not as useful in relating the Hausdorff and Cebysev properties
of the space. The families ,y; that we will consider are

~ = {(A, B): A, B are closed, bounded, nonempty,
convex subsets of X},

g;;: = {(A, B): (A, B) E ~, N(cA , lA) n N(cn , in) =

(where N(x, .;) ~ {y E X: [i y - x:i < ;}),

~ = {(A, B): (A, B) E g;;" CA ¢: B, Cn rf: A),
and

~ = {(A, B): (A, B) E ~ , A n B = z;}.

Note that

and
i = l, 2, 3

i = 2,3.

(1)

(2)

In the following sections, we will tacitly assume that all spaces considered
are at least of dimension 2. In many arguments two dimensional subspaces
of X will be considered and a superscript 2 on a set will indicate this. For
instance N2(X, ,i) will be N(x,~) intersected with the appropriate two
dimensional subspace.

3. SOME PROPERTIES OF CEBYSEV CE~TRES

We begin with the following theorem. The equivalence of (b) and (d) in
the theorem was shown by Garkavi in [6].

THEOREM 1. Suppose X is a Banach space in which closed convex and
bounded sets have unique Cebysev centres (in themselves). The following are
equivalent:

(a) For every pair ofclosed bounded convex sets A and B with A C Bone
has rCA, A) ~ reB, B).



(b)

(c)

r(5.5)

(d)
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For ('("('IT close'd bounded conn'x set A ill X, CIA, .n c' .1.

Era.!' TI\'() dime'l1.\ional cross .l('ction 5 of the unit hall hOI radin\
I.

X is tll'O dimensional or is all inner product space.

Proof If (b) fails for A. the ball B = B(c(A. X). r(A, X» contains A and
rIA, A) ::> r(A, X) c rIB, B). Thus (a) fails and so (a) impiles (b). Similarly.
if (c) fails for some cross section 5, 1'(5,5)' I > 1'(5. X). and (b) fails.
Thus (b) implies (c).

Suppose that (c) holds and that X has dimension at least three. Let '\1) '::: )(
have dimension three. Since .Y is an inner product space if e\ery three
dimensional subspace is. and since every two dimensional cross section of "\'0
is a two dimensional cross section of )(. one may assume that the dimension
of X is three. Let IT be a plane in Xodefined by II C~. ;x:f(x) = 0; for some
linear function f We will show that X has a norm one projection onto II
and it will follow from Kakutani's theorem [9, 10j that X i~ Euclidean.
To this end, let B be the unit ball in .r and let Bo .~ B n If and B,.
B n f-l( I,n). Let c" be the centre of B.,. £f bn E Bo with b" 1 then

c" - (c" .. bo), ~ I.
Since c" .- bo E B" and 1'( B,,) I. C,,' bo I. It follo\\s that. for
'. I, 'tc" b" I because

1
fe" - bo .. - (I . -) bl)

, t . c" - lIo ! ':,; I.

Let C T/ 1 c T,! •. k" . Then k" can be supposed convergent to k l, \\lth 1\" I.
Thus for all bn in Bo with ,i bo " lone has

tk T, -:- bn : ,,> I if t;;?-' C n .

We will show below that i c r, -+ O. Assuming this it follows. on letting
n -+ x and invoking the symmetry of Bo ' that for all fER and ;T ~ IT

This clearly excludes ko lying in II and we may define a projection P of X
onto II by setting

Px = TT

if x is written (uniquely) as tko + TT, TT E II. This is clearly a norm one
projection.

Finally we show that Cn -+ O. To this end we may suppose Cn -+ Co E Bo .
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Let bE Bo and let b ll = «n - I)!n)b ~ (ljn)c1 • Then b" E B" and

, II - I I
I ';:; I: c" - b" ' ~,,' --- b -+- - C1 - Cn, i 11 11

369

On taking limits one sees that 'b - Co, 'C;; I for all b in Bo . Since Bo is
strictly convex this implies that Co = G and (c) =? (d).

(d) =0' (a). Suppose A C Band rCA, A) > r(B, B). On replacing B by
B(c(B, B), reB, B» and normalizing, we may assume that A C B(G, 1),
r(A, X) = I and r(A, A) > 1.

Let a be the (unique) nearest point to zero in A. Then, in a Hilbert space.
it follows that (a - a) : a ;?: °for each a in A so that

,! a - a 12 :s:: ,a - a', a!

and da - a j' :s:: ': a - 0" which contradicts rCA, A) > I.
Finally, if X is two dimensional one verifies that the midpoint m of the

chord of B(G, 1) tangent to A at a satisfies

! tn-a l ~ I VaEA.

Since X is two dimensional and strictly convex, it is uniformly convex and
so SUPOEA ' m!2 - a;i < I. Thus r(A, X) < 1 which again is a contradiction.
Thus (d) => (a). I

We note that only for (d) =0. (a) did we use the completeness of X.
As the above theorem indicates, in any non-Euclidean three dimensional

space, many desirable properties of Cebysev centres do not hold. We illus­
trate this by explicitly constructing a two dimensional cross section of the I"
unit ball in 1R3 (p ¥o 2), with radius greater than one. The following propo­
sition will be useful in calculating this radius.

PROPOSITION I. Let X be a strictly convex Ilormed linear space and T an
isometry such that for some point .x, T" x = .x. Then the centre of the simplex
S = co(.x, T(.x), ... , P-l(.X» is its barycenrre.

Proof Let X o = I;':OI riPe.x) with t i > 0, i = 1,2,... , n and I;'~1 t i = I.
Let g be defined by

I n--l

g(x) = - L I x - P(x)1 2 'ifx E X.
11 i~O

Then g is a strictly convex function since the norm is strictly convex. Now

min max. x - s i2 = min max I' x - P(X)12
XES sES I " XES O~i~1l '

?o min g(x).
XES
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Suppose that X o minimizes g over S. Then for I ,; i C'( 11 - I, g(xo) =

g(P(xo)) and if x = (I ;'n) L.;'~;ll P(xo) one has

I 11 ·1

g(x) "'; Ii I g(T'(xo») = g(xo) ~ g(X).
i=O

This implies that X o = .~ and. in turn, that

1/-1 1 1/-1 I '1/-1 )

X o = i~O Ii P(xo)= i~ nP C~o tJi(X)

=! 'f Ti(x).
n j~O

Thus the barycentre minimizes g over S. Then

'n-l I '
min m.?x ,I x - s :1 2 :? g ( L: -:- Ti(.l;»)
XES s,S ,i~O II

1 11-1

- ". Ti(-) 2- - L. '\0 - X,
11 i~O

= !1l::iX 'xo - P(.x)12 = max, X o - S 1
2•

O'~I'-n-I sES

because ',XO - .X" = I' Tixo - P.X ' = I X o - Px for each i, as T is an
isometry. This shows that X o is the Cebysev centre for S in S. I

Now in li3) consider T(x l , x 2 , x3) = (.\"2' x 3 , Xl)' Then T is an isometry
and we will use the proposition to show explicitly that cross sections of the Ip

unit ball (p =1= 2) can be constructed of radius larger than one. This will
provide examples to parts (b), (c), (d) of Theorem I. We consider two cases.

Case one. 1 < p < 2. Let xed) = (2d ...:- 3, -d, -d) for d > O. Then
Px(d) = xed) and the simplex Sed) = co[x(d), T(x(d)), P(x(d))} is a triangle
in the plane Xl + X 2 -L "3 = 3. We shO\v that for d sufficiently large Sed)
has radius greater than ,! xed)' }J • Then it follows easily (directly or from
Theorem I) that the plane cross section

is the requisite cross section.
By the above proposition the centre of Sed) is the barycentre (I, I, 1). Thus

Sed) has radius «2d + 2)P - 2(d -L J)P)l/V and it suffices to show that, for d
sufficiently large,

(2d + 3)P - (2d --:- 2)P < 2[(d + I)P - d P].
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On applying the Mean Value Theorem to each side of this inequality we
have

(2d --'-- 3)P - (2d --'-- 2)P ~ p(2d + 3)P-1;

and, since for I < p < 2 one has (2d --;- 3)P-1 < 2dp
- 1for d sufficiently large,

the inequality is established.

Case two. 2 < P < 00. We now let xed) == (3 - 2d, d, d) and consider
d > 3;'2. We now wish to establish that 3 - 2d 1 P + 2dp < 1 2 - 2d IP --;­

21 d - I P or

(2d - 2)/' - (2d - 3)P > 2dp
- 2(d - IV

Again applications of the Mean Value Theorem reduce this to showing that
(2d -- 3)P-1 > 2d p

- 1. For d large enough this follows since p > 2.
Thus for each p ~ 2 one finds that a suitable cross section lies in the plane

Xl + X 2 --;- X3 = c(p) for some positive constant c(p).
In case p = I, one may simply take the face generated by x(O) = (3, 0, 0).

In case p = CD, x(3) = (-3, 3, 3) generates an appropriate cross section.
We complete this section with a characterization of Cebysev balls in Hilbert

space.

PROPOSITION 2. Let ff be a Hilbert space and f( a closed, bounded, concex,
nonempt)' subset offf. Then N(x, I):J K is the Cebysev ball for Kifand only if
x E K '=' corK n N*(x, I)} (where N*(x, I) == N* is the boundary of
N(x, -I) = N).

Proof Assume without loss that x = 0, 1 :> °and that N is the Cebysev
ball for K. Suppose °¢: 1(, Let H be a hyperplane separating k and °with
d(O, H) > °and H n k = :::. Denote the open half-space determined by H
and containing k by H- with ----H- = H-. Let p have smallest norm in H.
Let S- '=' H- n K and 3 = d(S-, N*) > 0. Let p' E (0, p] with ,p' I: = 3/2.
Choose y arbitrarily in S~ == H~ n K. Let P be a two dimensional subspace
of ff containing)' and p'. Represent points in P using a rectangular
coordinate system with basis chosen so that N2 is a Euclidean disk. The line
H2 is orthogonal to the line through °and p'. A simple geometric argument
in P shO\vs that y E lY( p', (I - (32;'4)1,2) so IV(p', (I - (32/4)1'2) :J S-. By the
triangle inequality, N(p'. I - 8/2):J S-. Let p = max~ 1 - 3/2, (I - 82;'4)112) <
I. Then Iv(p', p):J K, contradicting the assumption that IV is a Cebysev ball.

Conversely, assume °E 1(, It suffices to show that if K is perturbed by any
L' ~ 0, that (K - 1') n -..."lY ~ ::. Let H be the hyperplane containing 0,
orthogonal to r and let H+ be the closed half-space determined by Hand
containing l'. Since °E K we may deduce the existence of y E H+ n N* n K.
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But by looking at a cross section, it is clear that )'
(K r) n --IV c. I

4. CALCVLATlO' OF BOGNDS

l' (".Y so

We now calculate bounds for fJ.(·~), fJ.(§i). ,u(~) and a lower bound for
,u(~).

THEOREM 2. For any 5pace X with subsets appearing in .7 having unique
CebyseL: centres. we have ,u(.~),- ,u(.~) x.

Proof Let sex be a two dimensional subspace of X, representing points
in S using a rectangular coordinate system [' V. Let IV2 = S n IV(O, I). Let D
be the maximal, closed Euclidean disc, centre 0, contained in 1112. Let
::: = (z" , z,.) E D n N* with N* the boundary of N2. Assume without loss
that z" = O. Note that -::: ED n N* and::: and -::: are points of smoothness
of N2. Also note that the supporting tangent lines at ::: and -::: are parallel
to the L' axis. Let . £ denote the norm induced on S by D. Given 0 <: E< I.
let w = W(E) = (If" .0) be such that IV' £ = E, 11'" <: O. Define K' = K'(E)
and K" = K"(E) by

and

K' = :1 .1" -: 0:

K" ~- :5 = (s" • s,) E .'\/2: 0 ::: .1'" -H'!!: _L H'.

Clearly 0 is the Cebysev centre of K' and j1' the Ceby~ev centre of K", the
distance between them being, II' . Let R be the closed rectangle in S with
vertices at :::. -:::. ::: - II' and -::.~ II'. Let Q -~~ R -- D, Notice that
Q ~ K" -- K', Then

sup [inf x - s I]
xEK" '" K' fjEK'

-,;;: sup [inf i x - S
XEO 'iEK'

'.=; sup inf~l x - s £]
XEO .,EK'

=~ ~l sup [inf x - S : E] "': ~1 sup [inf ! x - s : E]
:rEQ sEK' XEQ sERnD

where ~I - 0 is independent of E,
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Interchanging the roles of K' and K" we obtain

sup [inf Ii x - s 1/] ~ :tIP -- (I - £2)1/2].
xEK'-K" sEK"
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so D(K', K") ~ !X1[1 - (I - £2)1/2]. Also, there is an uc2 > 0 independent of £

such that' w: ?!X2 • IV' E = iX2£, so

as E ->- O. Thus fL(~) = 00. As slight perturbation of K' and K" will allow
them to satisfy the criteria for (K', K") to be in SZ;; and we may deduce that
fL('~) = x; as well. I

THEORH\ 3. For any X as in Theorem 2. fL('?;l) ?: 2.

Proof We modify the construction in Theorem 2. Using the notation in
that theorem. let I be the line through w!2, parallel to the V axis, and let K'
be the maximal closed subset of K', containing 0 and supported by I.
Define K" similarly. 0 is the Cebysev centre of K' and w the Cebysev centre of
k". By comparison to Rand D and using the continuity of the norm \ve may
deduce that

i \1' Ilim---'-
070 D(K'.K")

A slight perturbation of K' and K" will give sets that fail to intersect and
we conclude that fL('~) ?: 2. I

Theorem 2 demonstrates that fL(g;,) and fL('~) are not sensitive measures
of the norm's geometry. It is not clear how useful fL('~) may be. However
the situation is quite different for fL(~)' Tn this case one is asking the fol­
lowing question: Given two arbitrary disjoint balls, how can you choose
convex sets A, B in each ball so that the balls are the Cebysev balls for the
convex sets and the Hausdorff distance between the two sets is minimized?
Having done this. what placement of balls maxiimzes the ratio R(A, B)?

THEOREM 4. For any strictly convex normed linear space X, satisfying the
conditions of Theorem 2, (I --L 51

:
2)/2 ~ fL(~) ~ 2.

Proof We perform the following construction in a two dimensional
subspace of X, with points referenced using a rectangular coordinate system.
We may parameterize the boundary of N2(0,2) by yet) = (Y1(t), h(t»,
t E [0. I] and the curve bounding the unit ball by x(t) = (x1(t), x 2(t»,
t E [0, I] in such a way that x(t) --L y(t): = ! x(t) - yet)' for each t E [0, I].
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One \\ay to show this is to consider the locus of points equidistant from ,r
and -x, and find a point on the locus of norm 1 (exactly two such points
by strict convexity), then allo\\ x to mo\'e counterclockwise along the
boundary of the unit ball and observe that r changes with x, continuousl\'
and als; counterclockwise. Let A = J~ Xl (ix~, th~ area contained by th~
curve x = x(f). Clearly 4.'1 = J,~Yt dy~. Suppose;: = ;:'U) ~~ X(f) , y(l),

t E [0, I] is contained in the interior of the balL centre 0. radius 51 ~. Then so
is ;: =c r(t) == x(t) - yU), t", [0, I]. Therefore r~ (Xl -.rd d(x~ - h)
f~ (Xl - Y1) d(x~ --:, y~) < 5,1 - 5,1 = 10,1. But this sum of integrals is also
equal to 2[f~ Xl dX2 --L f~ J"I (zr~J ,= lOA, a contradiction. By assuming that
L;:+(t)1 > 51~ for all f, a similar argument also gives a contradiction. So let
Xu , )'0 be such that X o ; = 1. Yo' = 2, : X" - .1'" x" - .1'" ~ 51 2

Let A be the half-ball centre 0, determined by the line segment [-x". x,,]
and B the half-balL centre Yu ' determined by [Yo - - X o • Yo - x,,]. chosen so
these half-balls touch at ~Yo . The distance between the centres of these balls
is clearly)'", = 2. The Hausdorff distance D(A, B) is readily computed as
512 - I. So

l', , 0

D(A. Bl 51 ~ - I 2

We conclude that fL(·3\) :> (I ..:. 51 i~),'2, the golden mean, which we denote
by m. The upper bound is a simple consequence of the triangle inequality. I

rna Hilbert space, the lower bound is actually attained.

THEOREM 5. If X is a Hilbert .\pace. then fL('#;) = m.

Proof Let B I • B2 be two disjoint closed balls in X. Assume B1 has centre 0,
radius I, and B2 has centre X~, radius 12 , °<: i~:" I. Let (K1 , K2 ) be a
pair of closed. bounded, convex, nonempty subsets with Bi the Cebysev
ball of K; , i = 1,2. Then D(K1 , K~) :;0 (I --;- X~ 12)1 2 - i 2 • Indeed, let HI
be the hyperplane through 0, orthogonal to X~ and let H 2 contain X 2 and be
parallel to HI . Let HI~' H1- be the two closed half-spaces determined by HI '
where X 2 E H 1-. Similarly define H 2-, H 2- with 0", H 2-. By Proposition 2.
there is ayE Bt n HI - n K 1 ' where B)' is the boundary of B1 • Referring
to a two dimensional subspace P containing y and x ~ it is seen that d( .1', K 2 ).'

dey, B2) ~ d(y*, B2) = (l T -'"2 '2)1 2 - 12 , where y* is the appropriate
point in P n HI n Bt, so D(K1 , /(2) ); (I~, x~ Y)l~ - ~2' To generalize,
redefine /\.1' K 2 as closed, bounded, nonempty. convex sets \vith disjoint
Cebysev balls HU1 , '1), IVU2' I~). i I :;' I~. Let i = i 1 :'i2and i) =,' t 1 - t 2 i:l[ ,

Then by the above argument. we may deduce that

t 1 - t~ "

D(K[. ,'(2)

[)

"'" (T--= S~)I,~ - i'
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Standard techniques give a global maximum for 8/«1 -L 82)1/2 - 7) on the
given region at .~ = 1, 8 = 2, so fL(~) ::( m. To complete the argument,
we may refer to the previous theorem, or note that for K1 0= N(O, 1),
K 2 =' N(x2 , I - E) with, x 2 ', = 2, 0 < E < I we may deduce that

where g(E) < 0 and g(E) --+ 0 as E --+ O. Thus fL(~) = m. I
Theorem 5 shows that the lower bound given in Theorem 4 is best possible.

Calculations in ti2) as p --+ CfC shows that the upper bound is also best
possible.

Remark 1. Does fL(~) = m imply that X is Euclidean? The integral
technique used in the proof of Theorem 4 shows that it would be sufficient to
demonstrate that [' x II = I: y:, = 1 and [' x - 2y [ = II X ~ 2y I, = 51/ 2

implies X is Euclidean. There is some reason for believing this is possible
since it is known [4, 7] that if the restriction on the norms of x and y is
removed, the condition characterizes Euclidean space. In James' terminology
[7], we are asking whether a localized version of his results on Pythagorean
and isosceles orthogonality holds.

Remark 2. Clearly the same integration technique of Theorem 4 can be
used to establish a variety of bounds on R(A, B) for other choices of g;.
For example, we could require C4 not to be an element of the Cebysev ball for
B and vice versa.

5. CO","CLUSIONS A:\D OPE:\ QCESTIO:\S

There are some additional questions that arise from the above discussion.
First. is it true that fL(~) = 2 in all spaces? Second, does fL(.~) = m
characterize inner product spaces? More generally, in light of Remark 1,
does the following condition characterize inner product spaces? For fixed
1\ > 0:

II x II = :; Y II = I,

i' x -T- '\y i, = Ii x - I\y:[ => I: x ~ '\Y:12 = ii x - ,\y 1:2 (*)

= i' x :1 2 --r- 1\2: y;: = I -~ ,\2.
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Our constant fL(~) is analogous to the rectangular comtant of Joly [2, 8].
Essentially, we consider isoceles orthogonality while Joly considers Birkhoff
orthogonality. This analogy also suggests that it might be possible to show
that (ok) makes Birkhoff orthogonality symmetric and so. in spaces of
dimension at least 3, characterizes Euclidean space.

Finally, we observe that all our limiting constructions provide sets in which
the centre in the space lies in the set. It follows that all the results in Section 4
hold (except for u( Fd .; 2) if c, ' en are replaced by c(A, X) and e(B. X).
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